PRELIMINARY COMMUNICATION

BONDING STUDIES OF COMPOUNDS OF THE GROUP IV ELEMENTS: IONISATION POTENTIALS OF THE Me₃M RADICALS

M.F. LAPPERT, J. SIMPSON and T.R. SPALDING The Chemical Laboratory, University of Sussex, Brighton BN1 9QJ (Great Britain) (Received March 12th, 1969)

As a continuation of our studies on the nature of bonding of the Group III and Group IV elements^{1,2}, we have measured the ionisation potentials (*IP*) of the radicals Me_3M^{\bullet} (M = Si, Ge, Sn) in order to obtain the M-X bond dissociation energies of compounds of the type Me_3M-X . Previously, values of the ionisation potentials for $Me_3Si^{\bullet} = 7.1 \pm 0.1 \text{ eV}^3$ and $Me_3Sn^{\bullet} = 7.10 \pm 0.05 \text{ eV}^4$ or $6.8 \pm 0.3 \text{ eV}^5$ have been obtained by two different methods. In our work all the ionisation potentials and appearance potentials (*AP*) of ions of the type Me_3M^+ from the compounds shown in Tables 1 and 2 were determined mass-spectrometrically using an AEI MS 9 instrument. The ionisation efficiency curves were interpreted by the Lossing semi-log plot method⁶ and the errors quoted are twice the standard deviation from a series of at least seven determinations.

The ionisation potential of Me₃Si was calculated using the recently determined value of the silicon-silicon bond dissociation energy⁷ $D(Me_3Si-SiMe_3)$ of 2.91 ± 0.13 eV (67 ± 3 kcal · mole⁻¹), in the expression:

9.58 ± 0.19

 2.65 ± 0.19

$$AP(Me_3Si) = IP(Me_3Si) + D(Me_3Si-SiMe_3)$$

Me₄Sn

8.76 ± 0.12

This value was subsequently used to obtain the ionisation potentials of Me₃Ge[•] and Me₃Sn[•] by substitution in the equation:

$$AP(Me_3Si) - AP(Me_3M) = IP(Me_3Si) - IP(Me_3M)$$
 (M = Ge, Sn)

The values obtained were: $IP(Me_3Si) = 7.31 \pm 0.18 \text{ eV}, IP(Me_3Ge) = 7.11 \pm 0.18 \text{ eV},$ $IP(Me_3 Sn) = 6.93 \pm 0.26 \text{ eV}$. The internal consistency of our results was checked using data obtained from the compounds $Me_3GeSnMe_3$ and Me_3CSnMe_3 . In the latter case, the ionisation potential of Me₃C[•] was taken as $7.42 \pm 0.05 \text{ eV}^8$, giving a value for *IP*(Me₃Sn) of 6.71 \pm 0.23 eV. Work is now in progress to extend these studies to a wide range of Me₃M-X compounds.

ACKNOWLEDGEMENTS

We wish to thank the S.R.C. and the U.S. Air Force Office of Scientific Research for their support.

REFERENCES

- 1 J.C. Baldwin, M.F. Lappert, J.B. Pedley and J.A. Treverton, J. Chem. Soc. A, (1967) 1980.
- 2 M.F. Lappert, M.R. Litzow, J.B. Pedley, P.N.K. Riley and A. Tweedale, J. Chem. Soc. A, (1968) 3105.
- 3 S.J. Band, I.M.T. Davidson and C.A. Lambert, J. Chem. Soc. A, (1968) 2068.
- 4 A.L. Yergey and F.W. Lampe, J. Organometal. Chem., 15 (1968) 339.
- 5 F.W. Lampe and A. Nichaus, J. Chem. Phys., 49 (1968) 2949.
 6 F.P. Lossing, A.W. Tickner and W.A. Bryce, J. Chem. Phys., 19 (1951) 1254.
- 7 I.M.T. Davidson and I.L. Stephenson, J. Chem. Soc. A, (1968) 282.
- 8 J.A. Hipple and D.P. Stevenson, Phys. Rev., 63 (1943) 121.

J. Organometal. Chem., 17 (1969) P1-P2